Expression and functional analysis of a CLV3-like gene in the model legume Lotus japonicus.
نویسندگان
چکیده
Plant aerial parts are differentiated from stem cells that are located in the shoot apical meristem (SAM). CLAVATA3 (CLV3)-CLV1 is a well-known ligand-receptor pair, which functions in SAM maintenance. In Lotus japonicus, HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) shows the highest similarity with CLV1 of all Arabidopsis receptor-like kinases (RLKs). However, HAR1 functions in the systemic regulation of root nodule development, but does not appear to function in SAM maintenance. Therefore, the gene that is responsible for SAM maintenance in L. japonicus is largely unknown. Here, we identified the L. japonicus CLV3-like (LjCLV3) gene as a counterpart of AtCLV3 and performed expression and functional analysis. LjCLV3 transcripts were detected in the central region of the shoot meristems. However, unlike AtCLV3, LjCLV3 expression was not detected in the epidermal layer, but in the inner layers of the shoot meristems. RNA interference (RNAi) of LjCLV3 caused enlargement of not only the SAM, but also the primary and secondary inflorescence meristems (IMs). Furthermore, LjCLV3-silenced plants exhibited fasciated stems and an increased number of flowers per peduncle. These results reveal that LjCLV3 is responsible for the maintenance of the SAM as well as the primary and secondary IMs.
منابع مشابه
Lotus Base: An integrated information portal for the model legume Lotus japonicus
Lotus japonicus is a well-characterized model legume widely used in the study of plant-microbe interactions. However, datasets from various Lotus studies are poorly integrated and lack interoperability. We recognize the need for a comprehensive repository that allows comprehensive and dynamic exploration of Lotus genomic and transcriptomic data. Equally important are user-friendly in-browser to...
متن کاملGenome-wide Analyses of the Structural Gene Families Involved in the Legume-specific 5-Deoxyisoflavonoid Biosynthesis of Lotus japonicus
A model legume Lotus japonicus (Regel) K. Larsen is one of the subjects of genome sequencing and functional genomics programs. In the course of targeted approaches to the legume genomics, we analyzed the genes encoding enzymes involved in the biosynthesis of the legume-specific 5-deoxyisoflavonoid of L. japonicus, which produces isoflavan phytoalexins on elicitor treatment. The paralogous biosy...
متن کاملRecent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria
Legumes, as protein-rich crops, are widely used for human food, animal feed and vegetable oil production. Over the past decade, two legume species, Medicago truncatula and Lotus japonicus, have been adopted as model legumes for genomics and physiological studies. The tobacco transposable element, Tnt1, is a powerful tool for insertional mutagenesis and gene inactivation in plants. A large colle...
متن کاملEfficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9
The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation) related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predict...
متن کاملCloning and expression analysis of a MAPKKK gene and a novel nodulin gene of Lotus japonicus.
We isolated a cDNA encoding mitogen-activated protein kinase kinase kinase alpha, designated LjM3Kalpha, from Lotus japonicus, a model legume. The gene was expressed constitutively in roots, root nodules, and shoots. We also identified a novel nodulin gene, LjNUF, that shows specific expression in nodules. LjNUF resembles the C-terminal half of a hypothetical protein (pir//D85436), the N-termin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 52 7 شماره
صفحات -
تاریخ انتشار 2011